

Nr. 4

Mitteilungen der Technischen Universität Clausthal -Amtliches Verkündungsblatt

Jahrgang 2012

24. Januar 2012

INHALT		
Tag	Seite	<u>;</u>
21.06.2011	Erste Änderung der Ausführungsbestimmungen für den Masterstudiengang Technische Betriebswirtschaftslehre an der Technischen Universität Clausthal, Fakultät für Energie- und Wirtschaftswissenschaften (6.10.51B)	8
28.10.2011	Ordnung über die Zulassungsvoraussetzungen und über die Zulassung für den gemeinsamen konsekutiven Master-Studiengang "Internet-Technologies and Information Systems" der Technischen Universität Braunschweig, der Technischen Universität Clausthal, der Georg-August-Universität Göttingen und der Gottfried Wilhelm Leibniz Universität Hannover (6.10.81)	28

Herausgeber: Der Präsident der Technischen Universität Clausthal Adolph-Roemer-Straße 2a, 38678 Clausthal-Zellerfeld Postfach 12 53, 38670 Clausthal-Zellerfeld Telefon: (0 53 23) 72-0, Telefax: (0 53 23) 72-35 00

6.10.51B Erste Änderung der Ausführungsbestimmungen für den Masterstudiengang Technische Betriebswirtschaftslehre an der Technischen Universität Clausthal, Fakultät für Energie- und Wirtschaftswissenschaften. Vom 21. Juni 2011

Die Ausführungsbestimmungen für den Master-Studiengang Technische Betriebswirtschaftslehre vom 09. November 2010 (Mitt. TUC 2010, Seite 288) werden mit Beschluss der Fakultät für Energie und Wirtschaftswissenschaften vom 21. Juni 2011 und Genehmigung des Präsidiums der Technischen Universität Clausthal (§ 37 Abs. 1 Ziffer 5b NHG) vom 10. November 2011durch die nachfolgende Fassung ersetzt.

Abschnitt I

Zu § 27 wird wie folgt geändert:

Zu § 27 Außer-Kraft-Treten, Übergangsbestimmungen

Studierende, die das Studium im WS 2011/12 begonnen haben bzw. sich zum Zeitpunkt des In-Kraft-Tretens dieser geänderten Ausführungsbestimmungen im zweiten oder höheren Fachsemester befinden, können das Studium bis zum Ende des Prüfungszeitraumes des Sommersemester 2014 nach den Ausführungsbestimmungen vom 09. November 2010 (AFB 2010) abschließen. Ein Wechsel in diese Ausführungsbestimmungen ist auf Antrag möglich; dieser muss spätestens bis zur Anmeldung der Masterarbeit im Prüfungsamt eingereicht werden. Eine Rücknahme des Antrags auf Wechsel ist ausgeschlossen!

Durch einen Wechsel entstehende eventuelle Härten können auf Antrag im Wege von Einzelfallentscheidungen durch den Vorsitzenden des Prüfungsausschusses ausgeglichen werden.

Zu § 28 wird wie folgt neu eingefügt

Zu § 28 In-Kraft-Treten

Diese Ausführungsbestimmungen treten am Tage nach ihrer Bekanntmachung im amtlichen Verkündungsblatt der Technischen Universität Clausthal in Kraft und gelten für alle Studierenden, die sich ab dem Zeitpunkt ihres In-Kraft-Tretens in den Masterstudiengang Technische Betriebswirtschaftslehre einschreiben.

Anlage 1 erhält folgende neue Fassung:

Anlage 1

1.1 Modulliste für den Masterstudiengang Technische Betriebswirtschaftslehre

Alle Module des Masterstudiengangs Technische Betriebswirtschaftslehre sind in der nachfolgenden Tabelle aufgelistet. Für die Module 5, 6 und 7 mit Wahlpflichtveranstaltungen werden zunächst nur der geforderte Umfang und der Gewichtungsfaktor festgelegt. Zu diesen Modulen werden von der Lehreinheit Wirtschaftswissenschaften zu Beginn jedes Studienjahres aktualisierte Listen mit den in den nächsten drei bis vier Semestern tatsächlich angebotenen Wahlpflichtmodulen veröffentlicht. Weitere Wahlpflichtmodule können auf Antrag beim Prüfungsausschuss genehmigt werden.

Der Gewichtungsfaktor eines Moduls ergibt sich, indem die ECTS-Punkte dieses Moduls durch den von Vertiefungsrichtung abhängigen Umfang Σ dividiert werden. Dabei entspricht der Umfang Σ einer Vertiefungsrichtung der Summe der ECTS-Punkte der jeweiligen Module des Studiengangs bei Wahl dieser Vertiefungsrichtung ohne Berücksichtigung von Pflichtleistungsnachweisen.

Vertiefungsrichtung	Umfang Σ
Fertigung	113
Rohstoffgewinnung	120
Modellierung und Simulation	120
Energiemanagement	117

Erläuterungen zu den Abkürzungen finden sich am Ende dieser Anlage.

Lehrveranstaltung	SWS	ECTS	Тур	Prüfung	Gewichtung	
Pflichtmodule						
Modul 1: Planung betrieblicher Prozesse	6	6			6/Σ	
Ressourcenmanagement	2V + 1Ü	3	PF	K/M	N = 1	
Supply Chain Management	2V + 1Ü	3	PF	N/IVI	IN = I	
Modul 2: Internationale Unternehmensführung	7	9			9/Σ	
Internationales Management	2V	3	PF			
Internationale Rechnungslegung	2V + 1Ü	3	PF	K/M	N = 1	
Erfolgssteuerung	2V	3	PF			
Modul 3: Industrielle Marktprozesse	7	9			9/Σ	
Industrieökonomik	2V + 1Ü	3	PF			
Außenwirtschaft	2V	3	PF	K/M	N = 1	
Industriegütermarketing	2V	3	PF			

Modul 4: Betriebliche Querschnitts- funktionen	6	6			6/Σ	
Qualitätsmanagement I (Grundlagen des Qualitätsmanagements)	2V + 1Ü	3	PF	K/M	N = 1	
Qualitätsmanagement II (Methoden des Qualitätsmanagements)	2V + 1Ü	3	PF	IX/IVI	11 – 1	
Modul 5: Wahlpflichtmodul I	4	6			6/Σ	
Wahlpflichtfach I.1	2V	3	WPF	K/M	N = 0,5	
Wahlpflichtfach I.2	2V	3	WPF	K/M	N = 0,5	
Modul 6: Wahlpflichtmodul II	4	6			6/Σ	
Wahlpflichtfach II.1	2V	3	WPF	K/M	N = 0,5	
Wahlpflichtfach II.2	2V	3	WPF	K/M	N = 0,5	
Modul 7: Wahlpflichtmodul III	4	6			6/Σ	
Wahlpflichtfach III.1	2V	3	WPF	K/M	N = 0,5	
Wahlpflichtfach III.2	2V	3	WPF	K/M	N = 0,5	
Modul 8: Seminare	4	10			10/Σ	
Wirtschaftswissenschaftliches Seminar I	2S	5	PF	S	N = 0,5	
Wirtschaftswissenschaftliches Seminar II	2S	5	PF	S	N = 0,5	
Modul 9: Masterarbeit mit Kolloquium	21 Wochen	30	PF		30/Σ	
Masterarbeit und_Kolloquium		30	PF	MA, AK	N = 1	
Vertiefung	srichtu	ng: F	ertigu	ng		
Modul F10: Werkstoffkunde	3	6			3/113	
Werkstoffkunde	2V	3	PF	K/M	N = 1	
Praktikum zur Werkstoffkunde	1P	3	PLN	L	N = 0	
Modul F11: Fertigungs- und Produktionstechnik	7	10			10/113	
Fertigungstechnik I	2V	3	PF			
Fertigungstechnik II	2V	3	PF	K/M	N = 1	
Produktionstechnik	2V + 1Ü	4	PF			
Modul F12: Rechnerintegrierte Fertigung und Produktentwicklung	9	12			8/113	
Rechnerintegrierte Fertigung	2V + 1Ü	4	PF	K/M	N = 1	
Rechnerintegrierte Produktentwicklung	2V + 1Ü	4	PF	IN/ IVI	14 = 1	
Technisches Zeichnen/CAD	3Ü	4	PLN	L	N = 0	
Modul F13: Fabrik- und Anlagenplanung	3	4			4/113	
Fabrik- und Anlagenplanung	2V + 1Ü	4	PF	K/M	N = 1	

Vertiefungsrich	tung: R	Rohsto	offgew	/innung		
Modul R10: Tagebau und Internationaler Bergbau	7	9			9/120	
Tagebautechnik	2V	3	PF			
Dimensionierung und Einsatzplanung von Bau- und Tagebaumaschinen	1V + 1Ü	2	PF	K/M	N = 1	
Internationaler Bergbau	2V	3	PF			
Rohstoffsicherungsmanagement	1V	1	PF			
Modul R11: Tiefbau	4	6			6/120	
Tiefbau I	2V	3	PF	K/M	N = 1	
Tiefbau II	2V	3	PF	IX/ IVI	14 = 1	
Modul R12: Tiefbaubetriebe	5	7			7/120	
Fördertechnik I	2V	3	PF			
Planung und Projektierung von Tiefbaubetrieben	2V + 1Ü	4	PF	K/M	N = 1	
Modul R13: Förder- und Aufbereitungste- chnik	7	10			10/120	
Erdöl-/Erdgas-Produktionssysteme	2V	3	PF			
Grundlagen der Geo- Informationssysteme	2V + 1Ü	4	PF	K/M	N = 1	
Aufbereitung	2V	3	PF			
Vertiefungsrichtung	: Mode	llieru	ng un	d Simul	ation	
Modul M10: Grundlagen der Modellbildung und Simulation	6	9			9/120	
Modellbildung und Simulation	3V + 1Ü	6	PF	K/M	N = 2/3	
Fachpraktikum Materialflusssimulation	2P	3	PF	PA	N = 1/3	
Modul M11: Numerik I	4	6			6/120	
Ingenieurmathematik III (Numerische Mathematik für nicht mathematische Studiengänge)	3V + 1Ü	6	PF	K/M	N = 1	
Modul M12: Numerik II	6	9			9/120	
Ingenieurmathematik IV (Numerik der Differenzialgleichungen)	3V + 1Ü	6	PF	K/M	N = 2/3	
Numerisches Praktikum	2P	3	PF	L	N = 1/3	
Modul M13: Stochastische Modelle und Simulation	6	8			8/120	
Stochastische Modellbildung und Simulation	3V + 1Ü	5	PF	K/M	N = 5/8	
	ı -					

Vertiefungsrichtung: Energiemanagement					
Modul E10: Energiebetriebswirtschaft	8	9			9/117
Umweltrechnungswesen	2V	3	PF		
Rechnungswesen für die Energiewirtschaft	2V + 1Ü	3	PF	K/M	N = 1
Betriebliche Planung von Energiesystemen	2V + 1Ü	3	PF		
Modul E11: Energieökonomik und Energierecht	6	9			9/117
Umweltökonomik	2V	3	PF		
Energieökonomik	2V	3	PF	K/M	N = 1
Energierecht	2V	3	PF		
Modul E12: Energietechnik	9	11			11/117
Elektrizitätswirtschaft	3V	4	PF	K/M	N = 4/11
Energiesysteme	3V	4	PF	K/M	N = 4/11
Regenerative Energiequellen	3V	3	PF	K/M	N = 3/11
Modul E13: Global Management	2	3			0/117
Unternehmensplanspiel Global Management	2S	3	PLN	S	N = 0

Erläuterungen

ngen

PF Pflichtfach WPF Wahlpflichtfach

PLN Pflichtleistungsnachweis

K Klausur gemäß §15 Abs. 2 APO

M Mündliche Prüfung gemäß § 15 Abs. 3 APO

K/M Klausur oder mündliche Prüfung. Klausur oder mündliche Prüfung nach Wahl

der/des Prüfenden. Die Prüfungsform ist zu Beginn der Lehrveranstaltung festzulegen und gilt für alle Studierenden in diesem Semester (gemäß § 12 Abs. 2 APO)

L Benotete Protokolle / Zeichnungen bzw. Versuchsabnahme (Labor)

PA Praktische Arbeit gemäß §15 Abs. 5 APO MA Masterarbeit gemäß § 16 Abs. 1 APO

AK Kolloquium zur Abschlussarbeit gemäß § 15 Abs. 11 APO

S Seminar gemäß §15 Abs. 8 APO SWS Semesterwochenstunden

Bewertungen:

- Die Bewertung eines Moduls geht mit dem angegebenen Gewichtungsfaktor in die Gesamtnote ein.
- Bei Modulen mit mehreren Prüfungsteilen benötigt jeder Prüfungsteil einen "modulinternen" Gewichtungsfaktor N zur Berechnung der Modulnote.
- Module, in denen nur Leistungsnachweise zu erbringen sind, gehen nicht in die Benotung ein.

Anlage 1.2

erhält folgende neue Fassung für das Modul 4 und Ergänzung für das Modul 11:

Modul 4: Betriebliche Querschnittsfunktionen

Qualitätsmanagement I (Grundlagen des Qualitätsmanagements): Gliederung der Qualitätssicherung, Qualitätsmanagement in den Betriebsbereichen, Fehlervermeidung und Fehleranalyse, Zertifizierung, Akkreditierung, Qualitätskosten

Qualitätsmanagement II (Methoden des Qualitätsmanagements): Definition der Begriffe Qualität und Qualitätssicherung, Aufgaben eines Qualitätsmanagementsystems, Qualitätskostenmanagement

Modul M11: Numerik I

Ingenieurmathematik III (Numerische Mathematik für nicht mathematische Studiengänge): Lösung linearer und nichtlinearer Gleichungssysteme, Ausgleichsrechnung, Interpolation und Approximation, Numerische Integration und Differentiation

Anlage 2 erhält folgende neue Fassung

Anlage 2 Studienverlaufsplan gemäß § 5 Abs. 3 APO (Modellstudienplan) für den Masterstudiengang Technische Betriebswirtschaftslehre (M.Sc.)

SWS	1. Semester	2. Semester	3. Semester	4. Semester
1	Supply Chain	Außenwirtschaft		
2	Management	2V (3 ECTS)		
3	2V + 1Ü (3 ECTS)	Industriegüter- marketing	4 wirtschafts-	
4	Ressourcen-	2V (3 ECTS)	wissenschaftliche	
5	management 2V + 1Ü (3 ECTS)	1 1 1 1 1 1 1	Wahlpflichtfächer je 2V (3 ECTS)	
6	20 + 10 (3 EC13)	Industrieökonomik 2V + 1Ü (3 ECTS)	, , , , , , , , , , , , , , , , , , , ,	
7	Erfolgssteuerung			
8	2V (3 ECTS)	2 wirtschafts-		
9	Internationales Management	wissenschaftliche	2 wirtschafts-	
10	2V (3 ECTS)	Wahlpflichtfächer je 2V (3 ECTS)	wissenschaftliche	
11	Internationale	, , ,	Seminare je 2S (5 ECTS)	Masterarbeit + Kolloquium
12	Rechnungslegung 2V + 1Ü (3 ECTS)	Qualitätsmanagement I (Grundlagen des)	(30 ECTS)
13	20 + 10 (3 EC13)	Qualitätsmanage-		
14	Qualitätsmanagement II (Methoden des Qua-	ments) 2V + 1Ü (3 ECTS)	Tachnischa	
15	litätsmanagements)		Technische Vertiefungsrichtung	
16	2V + 1Ü (3 ECTS)		6 – 8 SWS (8 ECTS – 10 ECTS)	
17		Technische	,	
18		Vertiefungsrichtung		
19	Technische	7 – 9 SWS (10 ECTS – 12 ECTS)		
20	Vertiefungsrichtung	,		
21	8 – 9 SWS (12 ECTS – 13 ECTS)			
22				
23				
24				
Ges. SWS	24 SWS – 25 SWS	21 SWS – 23 SWS	18 SWS – 20 SWS	Masterarbeit
Ges. ECTS	30 ECTS – 31 ECTS	28 ECTS – 30 ECTS	30 ECTS – 32 ECTS	30 ECTS

Zeichenerklärung:

Seminar S Ü SWS Semesterwochenstunden

Übung V Vorlesung

Technische Vertiefungsrichtungen

	Vertiefungsrichtung: Fertigung							
SWS	1. Semester	2. Semester	3. Semester	4. Semester				
1	Fertigungstechnik l	Fertigungstechnik II	5 1 11 1					
2	2V (3 ECTS)	2V (3 ECTS)	Fabrik- und Anlagenplanung 2V + 1Ü (4 ECTS)					
3		Dook a suinte suinte	2V + 10 (4 LC13)					
4	Produktionstechnik 2V + 1Ü (4 ECTS)	Rechnerintegrierte Fertigung 2V + 1Ü (4 ECTS)	Do also aviata avianta					
5		27 + 10 (4 LC13)	Rechnerintegrierte Produktentwicklung 2V + 1Ü (4 ECTS)					
6	Werkstoffkunde 2V (3 ECTS)	Technisches Zeichnen	20 + 10 (4 LC13)					
7	27 (3 EC13)	(TZ-CAD) 3Ü (4 ECTS)						
8	Praktikum Werkstoffkunde	30 (4 LC13)						
9	1P (3 ECTS)							
Σ	8 SWS (13 ECTS)	8 SWS (11 ECTS)	6 SWS (8 ECTS)					
	23 SWS (32 ECTS)							

	Vertiefungsrichtung: Rohstoffgewinnung							
SWS	1. Semester	2. Semester	3. Semester	4. Semester				
1	Fördertechnik I	Tiefbau II	Aufbereitung I					
2	2V (3 ECTS)	2V (3 ECTS)	2V (3 ECTS)					
3	Tiefbau I	Planung und	Grundlagen der Geo-					
4	2V (3 ECTS)	Projektierung von Tiefbaubetrieben	Informationssysteme 2V + 1Ü (4 ECTS)					
5	Tagebautechnik	2V + 1Ü (4 ECTS)	2V + 10 (4 EC13)					
6	2V (3 ECTS)	lata a stianala Banka	Erdöl-/Erdgas-					
7	Rohstoffsicherungs- management 1V (1 ECTS)	Internationaler Bergbau 2V (3 ECTS)	Produktionssysteme 2V (3 ECTS)					
8		Dimensionierung u. Einsatzplanung von Bau-						
9		und Tagebaumaschinen 1V + 1Ü (2 ECTS)						
Σ	7 SWS (10 ECTS)	9 SWS (12 ECTS)	7 SWS (10 ECTS)					
	23 SWS (32 ECTS)							

	Vertiefungsrichtung: Modellierung und Simulation							
SWS	1. Semester	2. Semester	3. Semester	4. Semester				
1								
2	Ingenieurmathematik III Einführung	Ingenieurmathematik IV Numerik der	Stochastische Modellbildung					
3	in die Numerik 3V + 1Ü (6 ECTS)	Differentialgleichungen 3V + 1Ü (6 ECTS)	und Simulation					
4								
5		Numerisches Praktikum	Modellierungs- praktikum					
6	Modellbildung und Simulation	2P (3 ECTS)	2V/P (3 ECTS)					
7	3V + 1Ü (6 ECTS)	Materialfluss- simulation						
8		2P (3 ECTS)						
Σ	8 SWS (12 ECTS)	8 SWS (12 ECTS)	6 SWS (8 ECTS)					
	22 SWS (32 ECTS)							

		Vertiefungsrichtung: Ene	ergiemanagement			
SWS	1. Semester	2. Semester	3. Semester	4. Semester		
1	Umwelt-					
2	rechnungswesen 2V (3 ECTS)	Elektrizitätswirtschaft 3V (4 ECTS)	Regenerative Energiequellen 3V (3 ECTS)			
3	Rechnungswesen für die Energiewirtschaft		37 (3 2013)			
4	2V (3 ECTS)	Energieökonomik				
5		2V (3 ECTS)	Energiesysteme 3V (4 ECTS)			
6	Betriebliche Planung von Energiesystemen 2V + 1Ü (3 ECTS)	Energierecht				
7	20 + 10 (3 EC13)	2V (3 ECTS)	Unternehmensplanspiel Global Management			
8	Umweltökonomik		2S (3 ECTS)			
	2V (3 ECTS)					
Σ	9 SWS (12 ECTS)	7 SWS (10 ECTS)	8 SWS (10 ECTS)			
	24 SWS (32 ECTS)					

Abschnitt II

Diese Änderungen treten am Tage nach ihrer Bekanntmachung im amtlichen Verkündungsblatt der Technischen Universität Clausthal in Kraft.

6.10.81 Ordnung über die Zugangsvoraussetzungen und über die Zulassung für den gemeinsamen konsekutiven Master-Studiengang "Internet Technologies and Information Systems" der Technischen Universität Braunschweig, der Technischen Universität Clausthal, der Georg-August-Universität Göttingen und der Gottfried Wilhelm Leibniz Universität Hannover

Der Lenkungsausschuss des gemeinsamen Master-Studiengangs "Internet Technologies and Information Systems" hat am 28.10.2011 gemäß § 2 Abs.1 des Vertrags zur ersten Änderung des Kooperationsvertrags der Technischen Universität Braunschweig, der Technischen Universität Clausthal, der Georg-August-Universität Göttingen und der Leibniz Universität Hannover über die Durchführung des gemeinsamen konsekutiven Master-Studiengangs und eines gemeinsamen Promotionsprogramms "Internet Technologies and Information Systems" vom 24.8.2011 folgende Ordnung nach §18 Abs. 8 NHG und §7 NHZG beschlossen.

I. Anwendungsbereich

§ 1 Anwendungsbereich

- (1) Diese Ordnung regelt den Zugang und die Zulassung zum Master-Studiengang "Internet Technologies and Information Systems".
- (2) Die Universitäten Technische Universität Braunschweig, Technische Universität Clausthal, Universität Göttingen und Universität Hannover führen nach Maßgabe der folgenden Bestimmungen im Studiengang "Internet Technologies and Information Systems" für alle zu vergebenden Studienplätze ein Verfahren zur Feststellung der Zugangsvoraussetzungen durch.
- (3) ¹Erfüllen mehr Bewerberinnen und Bewerber die Zugangsvoraussetzungen als Plätze zur Verfügung stehen, vergeben die beteiligten Universitäten an jene die Studienplätze nach dem Ergebnis des Auswahlverfahrens nach § 5. ²Die Auswahlentscheidung wird nach der besonderen Eignung für den gewählten Studiengang getroffen. ³Erfüllen nicht mehr Bewerberinnen oder Bewerber die Zugangsvoraussetzungen als Plätze zur Verfügung stehen, findet ein Auswahlverfahren nicht statt.

II. Zugangsberechtigung

§ 2

Zugangsvoraussetzungen

- (1) Voraussetzung für den Zugang zum Master-Studiengang ist, dass die Bewerberin oder der Bewerber ein mindestens sechssemestriges Studium mit Bachelor-Abschluss im Umfang von mindestens 180 ECTS-Credits oder mit einem gleichwertigen Abschluss in einem Studiengang an einer deutschen Hochschule oder an einer Hochschule, die einem der Bologna-Signatarstaaten angehört, im Studiengang "Computer Science" oder in einer fachlich eng verwandten Fachrichtung gemäß Absatz 4 abgeschlossen hat und für den Studiengang besonders geeignet gemäß Absatz 3 ist. Abschlussprüfungen, die in einem Land außerhalb der Bologna-Signatarstaaten bestanden worden sind, bedürfen der Feststellung der Gleichwertigkeit zu den Abschlüssen nach Satz 1 Berücksichtigung der Vorschläge der Zentralstelle für ausländisches Bildungswesen (ZAB) beim Sekretariat der Ständigen Konferenz der Kultusminister der Länder in der Bundesrepublik Deutschland (KMK) für die Anerkennung und Bewertung ausländischer Bildungsnachweise, die unter der URL www.anabin.de niedergelegt sind. Die Noten der ausländischen Bildungsnachweise sind in das deutsche Notensystem umzurechnen.
- (2) ¹Abweichend von Absatz 1 ist grundsätzlich zugangsberechtigt, wer ein Studium zum Bewerbungszeitpunkt noch nicht abgeschlossen, aber wenigstens 150 ECTS-Credits in einem einschlägigen Bachelor-Studiengang oder einem gleichwertigen Studiengang erworben hat. ²Die aus den bisherigen Prüfungsleistungen ermittelte Durchschnittsnote wird anstelle der Bachelornote oder der Note eines gleichwertigen Bildungsnachweises auch im Verfahren über die Feststellung der Zugangsvoraussetzungen nach Absatz 3 und im Auswahlverfahren berücksichtigt, unabhängig davon, ob das Ergebnis der Bachelorprüfung hiervon abweicht.
- (3) ¹Die besondere Eignung besitzt, wer einen Bachelorabschluss oder gleichwertigen Abschluss mit der Note 2,3 oder besser nachweist.
- (4) ¹Die Entscheidung, ob ein Vorstudium im Sinne der Absätze 1 und 2 fachlich eng verwandt ist (fachliche Einschlägigkeit), trifft die Auswahlkommission. ²Voraussetzung der fachlichen Einschlägigkeit des Vorstudiums ist der Nachweis mindestens der folgenden Kompetenzen, die in der Anlage konkretisiert werden:

Leistung	Mindestleistung
Grundlagen der Informatik	35 ECTS-Credits
Informatik der Systeme	50 ECTS-Credits
Mathematik	25 ECTS-Credits
Nebenfach/Anwendungsfach	16 ECTS-Credits

³Die Auswahlkommission kann die Feststellung der fachlichen Einschlägigkeit davon abhängig machen, Leistungen nach Satz 2, die bislang noch nicht erbracht wurden, innerhalb von zwei Semestern nachzuholen; in diesem Fall sind die Feststellung der fachlichen Einschlägigkeit und die Zulassung bis zum Nachweis der noch fehlenden Leistungen, der innerhalb von zwei Semestern seit der Einschreibung bei der Universität (Ausschlussfrist) eingegangen sein muss, auflösend bedingt. ⁴Liegt der Nachweis der noch fehlenden Leistungen nicht fristgerecht vor, werden die Feststellung der fachlichen Einschlägigkeit und ein darauf beruhender Zulassungsbescheid unwirksam. ⁵Die Feststellung der fachlichen Einschlägigkeit ist ausgeschlossen, sofern der Umfang der Leistungen nach Satz 2, die bislang noch nicht erbracht wurden, mehr als 15 ECTS-Credits beträgt.

(5) ¹Bewerberinnen und Bewerber, deren Muttersprache nicht Englisch ist, müssen über ausreichende Kenntnisse der englischen Sprache verfügen. ²Ausreichende Englischkenntnisse sind durch die nachfolgend genannten Mindestleistungen in den folgenden international anerkannten Tests oder durch gleichwertige Tests nachzuweisen:

Englischtest	Mindestleistung
Common European Framework	B2-Nachweis
Paper based TOEFL	500 Punkte
Computer based TOEFL	173 Punkte
New Internet based TOEFL	61 Punkte
International English Language Testing System (IELTS)	Niveaustufe 5
Cambridge Main Suite	First Certificate in English (FCE) mindestens mit der Note "B" oder Certificate in Advanced English (CAE) mindestens mit der Note "C"

³Das erfolgreiche Absolvieren eines der Tests darf nicht länger als zwei Jahre vor dem Eingang des Antrags auf Zulassung zum Master-Studiengang zurückliegen. ⁴Ausgenommen von der Verpflichtung zum Nachweis eines Tests sind Bewerberinnen und Bewerber mit einem mindestens zweijährigen Studien- oder Berufsaufenthalts in einem englischsprachigen Land innerhalb der letzten drei Jahre vor Eingang des Antrags auf Zulassung. ⁵Ebenfalls ausgenommen sind auf Antrag

Bewerberinnen und Bewerber, die innerhalb der letzten drei Jahre ein mindestens zweijähriges ausschließlich englischsprachiges Studienprogramm erfolgreich absolviert haben.

- (6) Kenntnisse der deutschen Sprache sind nicht nachzuweisen.
- (7) ¹Im Übrigen bleiben die allgemein für die Immatrikulation geltenden Bestimmungen der Immatrikulationsordnung der beteiligten Universitäten unberührt. ²Die Einschreibung der Bewerberinnen und Bewerber, die nach Absatz 2 als grundsätzlich zugangsberechtigt gelten, ist bis zum Nachweis über die erfolgreiche Beendigung des Bachelor-Studiums oder eines gleichwertigen Studiums auflösend bedingt. ³Der Nachweis ist bei Einschreibung zum Wintersemester bis zum 15.11., bei Einschreibung zum Sommersemester bis zum 15.05. zu erbringen.

III. Auswahlverfahren

§ 3

Studienbeginn, Zulassungsantrag, Ausschlussfrist

- Master-Studiengang beginnt jeweils zum Winter-Sommersemester. ²Der Zulassungsantrag soll zunächst über ein Online-Portal gestellt werden; das Nähere wird in einem angemessenen Zeitraum vor Ablauf der Bewerbungsfrist durch die Technische Universität Braunschweig, die Technische Universität Clausthal, die Universität Göttingen und die Universität Hannover bekannt gegeben. ³Der Zulassungsantrag für den Master-Studiengang muss unter Benutzung des bereitgestellten Online-Bewerbungsformulars einschließlich der gemäß Absatz 2 erforderlichen Bewerbungsunterlagen bis (Ausschlussfrist) für das Wintersemester und bis zum 15.07. (Ausschlussfrist) für das Sommersemester eingegangen sein. ⁴Der Antrag gilt nur für die Vergabe der Studienplätze des betreffenden Zulassungstermins. ⁵Die beteiligten Universitäten sind nicht verpflichtet, die Angaben der Bewerberinnen und Bewerber von Amts wegen zu überprüfen.
- (2) Dem eigenhändig zu unterschreibenden Zulassungsantrag sind folgende Unterlagen beizufügen:
- a) das Abschlusszeugnis oder die Abschlusszeugnisse der Bewerberin oder des Bewerbers in Form beglaubigter Abschriften oder beglaubigter deutscher oder englischer Übersetzungen, falls die Originale nicht in englischer oder deutscher Sprache abgefasst sind; falls ein Abschlusszeugnis noch nicht vorliegt, ist eine Bescheinigung über die erbrachten Leistungen, die ECTS-Credits und über die Durchschnittsnote einzureichen;
- b) ein in englischer Sprache verfasster tabellarischer Lebenslauf mit einer aussagekräftigen Darstellung des Bildungswegs;
- c) ein Nachweis ausreichender Kenntnisse der englischen Sprache gemäß § 2 Abs. 5; d) eine in englischer Sprache verfasste Erklärung darüber, ob die Bewerberin oder der Bewerber einen fachlich eng verwandten Master-Studiengang bislang erfolgreich, erfolglos oder noch nicht beendet hat;

- e) eine Erklärung, welchen Studienschwerpunkt die Bewerberin oder der Bewerber auf Grund seiner bisherigen Ausbildung zu belegen beabsichtigt.
- (3) ¹Bewerbungen, die nicht fristgerecht eingehen, sind vom weiteren laufenden Verfahren ausgeschlossen. ²Falls eine fristgerecht eingegangene Bewerbung unvollständig oder nicht formgerecht ist, kann die Auswahlkomission (§ 4) eine Frist von bis zu zwei Wochen setzen, in der die Mängel beseitigt werden können. ³Weist die Bewerbung nach Ablauf der Frist immer noch Mängel auf, so ist sie vom weiteren laufenden Verfahren ausgeschlossen. ⁴Die eingereichten Unterlagen verbleiben bei der Universität.
- (4) Macht eine Bewerberin oder ein Bewerber glaubhaft, dass sie oder er aufgrund einer Behinderung durch das Auswahlverfahren gegenüber anderen Bewerberinnen und Bewerbern benachteiligt ist, ist auf Antrag ein geeigneter Nachteilsausgleich durch die Auswahlkommission zu gewähren.

§ 4 Auswahlkommission für den Master-Studiengang

- (1) Für die Vorbereitung der Auswahlentscheidung für den Studiengang bilden die beteiligten Fakultäten, d.h. die Carl-Friedrich-Gauß-Fakultät der Technischen Universität Braunschweig, die Fakultät für Mathematik/Informatik und Maschinenbau der Technischen Universität Clausthal, die Fakultät für Elektrotechnik und Informatik der Universität Hannover und die Fakultät für Mathematik und Informatik der Universität Göttingen, eine Auswahlkommission.
- (2) ¹Der Auswahlkommission gehören vier Mitglieder an, die dem hauptberuflichen wissenschaftlichen Personal oder der Hochschullehrergruppe angehören, und ein Mitglied der Studierendengruppe mit beratender Stimme. ²Wenigstens ein Mitglied muss der Professorengruppe angehören. ³Die Mitglieder werden durch die Fakultätsräte der beteiligten Fakultäten eingesetzt. ⁴Die Amtszeit der Mitglieder beträgt zwei Jahre, die des studentischen Mitglieds ein Jahr. ⁵Wiederbestellung ist möglich. ⁶Die Auswahlkommission ist beschlussfähig, wenn mindestens zwei stimmberechtigte Mitglieder anwesend sind. ⁷Bei vorzeitigem Ausscheiden eines Mitglieds aus der Auswahlkomission muss durch die beteiligten Fakultäten ein Nachfolger bestimmt werden.
- (3) Die Aufgaben der Auswahlkommission sind:
- a) Prüfung der eingehenden Zulassungsanträge auf formale Richtigkeit,
- b) Prüfung und gegebenenfalls Begutachtung der Zugangsvoraussetzungen,
- c) Durchführung der Auswahlgespräche gemäß § 7,
- d) Entscheidung über die Zulassung oder die Ablehnung der Bewerberinnen oder Bewerber einschließlich der Zuordnung zu einer der vier beteiligten Universitäten.
- (4) Die Auswahlkommission berichtet den Fakultätsräten aller beteiligten Fakultäten nach Abschluss des Vergabeverfahrens über die gesammelten Erfahrungen und unterbreitet gegebenenfalls Vorschläge für die Weiterentwicklung des Vergabeverfahrens.

§ 5 Ablauf des Auswahlverfahrens

- (1) Ein Auswahlverfahren umfasst jeweils die auf einen Zulassungstermin bezogene Vergabe von Studienplätzen.
- (2) ¹Über die Zulassungsanträge wird in einem Hauptverfahren und, soweit erforderlich, in Nachrückverfahren entschieden. ²Die Studienplätze werden auf Grund einer Rangliste vergeben, die sich aus der Auswahl der Bewerber ergibt.
- (3) Die Auswahlkommission kann durch eine Überbuchung berücksichtigen, dass Studienplätze voraussichtlich nicht angenommen werden.
- (4) ¹Im Übrigen bleiben die allgemein für die Immatrikulation geltenden Bestimmungen der Immatrikulationsordnung der beteiligten Universitäten unberührt. ²Die Zulassung der Bewerberinnen und Bewerber, die nach § 2 Abs. 2 als grundsätzlich zugangsberechtigt gelten, ist bis zum Nachweis über die erfolgreiche Beendigung des Bachelor-Studiums oder eines gleichwertigen Studiums auflösend bedingt. ³Der Nachweis ist bei Einschreibung zum Wintersemester bis zum 15.11., bei Einschreibung zum Sommersemester bis zum 15.05. zu erbringen.

§ 6 Auswahl der Bewerberinnen und Bewerber

- (1) ¹Die Auswahl wird auf Grund einer Kombination der nachfolgenden Kriterien festgestellt:
- a) auf Grund der Bachelornote oder der Note eines äquivalenten Bildungsnachweises,
- b) auf Grund eines Auswahlgesprächs mit der Bewerberin oder dem Bewerber.
- (2) Die Auswahlkommission trifft unter den eingegangenen Bewerbungen eine Vorauswahl nach Absatz 3 und unter den vorausgewählten Bewerberinnen oder Bewerbern eine Auswahl auf Grund der in Absätzen 1 und 4 genannten Auswahlkriterien.
- (3) ¹Unter den eingegangenen Bewerbungen findet zur Begrenzung der Teilnehmerzahl am Auswahlgespräch eine Vorauswahl auf das Zweifache der Zahl der nach dem Auswahlverfahren zu vergebenden Studienplätze statt. ²Hierfür wird eine Rangliste auf der Grundlage des Ergebnisses des Bachelor-Abschlusses oder eines gleichwertigen Abschlusses erstellt. ³Sofern Ranggleichheit besteht, werden sämtliche Bewerberinnen und Bewerber der höchsten Rangfolge zur Teilnahme zugelassen.
- (4) ¹Die Auswahl erfolgt auf Grund einer Rangliste, die folgendermaßen erstellt wird:
- a) Je nach Feststellung der besonderen Eignung in dem Auswahlgespräch wird eine der folgenden Noten vergeben:

Die Bewerberin oder der Bewerber ist sehr geeignet 1, gut geeignet 2, geeignet 3,

ausreichend geeignet 4, wenig geeignet 5.

Zur differenzierten Bewertung können Zwischenwerte durch Vermindern oder Erhöhen der Noten um 0,3 gebildet werden; die Noten 0,7, 4,3, 4,7 und 5,3 sind ausgeschlossen.

- b) Die Note des Bachelor-Abschlusses oder eines gleichwertigen Abschlusses wird mit 60 multipliziert, die Note für das Auswahlgespräch mit 40.
- ²Die sich aus der jeweiligen Multiplikation ergebenden Summen werden addiert und sodann durch hundert dividiert. ³Die sich ergebende Zahl wird auf zwei Stellen hinter dem Komma berechnet. ⁴Es wird nicht gerundet.
- (5) ¹Besteht nach der Erstellung der Rangliste Ranggleichheit, bestimmt sich die Rangfolge nach dem Ergebnis des Bachelor-Abschlusses oder eines gleichwertigen Abschlusses. ²Im Übrigen entscheidet bei Ranggleichheit das Los.

§ 7 Auswahlgespräch

- (1) ¹Das Auswahlgespräch soll zeigen, ob die Bewerberin oder der Bewerber für den ausgewählten Studiengang besonders geeignet ist. ²Dabei gelten folgende Grundsätze für die Durchführung des Gesprächs:
- a) Das Auswahlgespräch wird in der Regel in der Zeit vom 15.02 bis 31.03. für das Wintersemester und vom 15.08. bis 31.09. für das Sommersemester durchgeführt. Die genauen Termine sowie der Ort werden in einem angemessenen Zeitraum vor Beginn der Auswahlgespräche durch die beteiligten Universitäten bekannt gegeben. Die Bewerberinnen oder Bewerber werden von den beteiligten Universitäten rechtzeitig zum Auswahlgespräch eingeladen. Bei im Ausland ansässigen Bewerberinnen oder Bewerbern sowie in begründeten Ausnahmefällen sind auch eine Videokonferenz oder ein telefonisches Auswahlgespräch zugelassen, sofern die Identität der Bewerberin oder des Bewerbers zweifelsfrei festgestellt werden kann. Die Einzelheiten des Verfahrens in solchen Fällen legt die Auswahlkommission fest.
- b) Die Auswahlkommission führt mit jeder Bewerberin oder jedem Bewerber ein Auswahlgespräch mit einer Dauer von ca. 15 Minuten. Das Auswahlgespräch kann mit bis zu vier Bewerberinnen oder Bewerbern gleichzeitig durchgeführt werden.
- c) Über die wesentlichen Fragen und Antworten des Gesprächs ist ein Protokoll zu führen, das von den Mitgliedern der Auswahlkommission zu unterzeichnen ist. Aus dem Protokoll müssen Tag und Ort des Gesprächs, die Namen der Kommissionsmitglieder, der Name der Bewerberin oder des Bewerbers und die Beurteilung ersichtlich werden.
- (2) Das Auswahlgespräch erstreckt sich auf die Motivation der Bewerberin oder des Bewerbers sowie auf folgende Eignungsparameter:
- a) Fähigkeit zu wissenschaftlicher bzw. grundlagen- und methodenorientierter Arbeitsweise,
- b) bisherige Erfahrungen und sichere Kenntnis der wissenschaftlichen Grundlagen auf dem Gebiet/Fach Informatik, die im Rahmen des Studiengangs Informatik oder einem fachlich eng verwandten Studiengang erworben wurden und durch

Unterlagen, etwa die Belegung eines fachlich einschlägigen Studienschwerpunkts, nachgewiesen werden.

- (3) Die Mitglieder der Auswahlkommission bewerten nach Abschluss des Gesprächs die Bewerberin oder den Bewerber nach besonderer Eignung für den ausgewählten Studiengang auf einer Skala nach § 6 Abs. 4 Buchstabe a).
- (4) ¹Eine Bewerberin oder ein Bewerber, die oder der ohne Vorliegen eines wichtigen Grundes zu dem Gesprächstermin nicht erscheint, ist vom weiteren Verfahren ausgeschlossen. ²Bei Vorliegen eines wichtigen Grundes setzt die Auswahlkommission auf Antrag einen neuen Termin für das Auswahlgespräch fest. ³Der wichtige Grund und der Antrag auf Festsetzung eines neuen Termins sind unverzüglich, spätestens aber innerhalb von zwei Tagen nach dem zunächst festgesetzten Termin der Auswahlkommission nachzuweisen bzw. zu stellen. ⁴Eine ausgeschlossene Bewerberin oder ein ausgeschlossener Bewerber ist berechtigt, am nächstmöglichen Auswahlverfahren erneut teilzunehmen.

§ 8 Zulassungsbescheid, Ablehnungsbescheid und Nachrückverfahren

- (1) ¹Bewerberinnen und Bewerber, die zugelassen werden können, erhalten einen schriftlichen Zulassungsbescheid, den die oder der Vorsitzende der Auswahlkommission im Auftrag der vier beteiligten Universitäten erlässt. ²In diesem wird eine Frist festgelegt, innerhalb derer die Bewerberin oder der Bewerber sich einzuschreiben oder schriftlich zu erklären hat, ob sie oder er den Studienplatz annimmt. ³Die Bewerberin oder der Bewerber muss sich spätestens zwei Wochen nach Ablauf der Frist nach Satz 2 einschreiben (Ausschlussfrist), sofern keine Einschreibung nach Satz 2 vorliegt. ⁴Liegen der Universität
- a) die Einschreibung nach Satz 2 oder
- b) die Erklärung nach Satz 2 und die Einschreibung nach Satz 3 nicht frist- und formgerecht vor, wird der Zulassungsbescheid unwirksam. ⁵Auf diese Rechtsfolgen ist im Zulassungsbescheid hinzuweisen.
- (2) ¹Bewerberinnen und Bewerber, die nicht zugelassen werden können, erhalten einen Ablehnungsbescheid, in dem der erreichte Rangplatz und der Rangplatz der zuletzt zugelassenen Bewerberin oder des zuletzt zugelassenen Bewerbers aufgeführt sind und den die oder der Vorsitzende der Auswahlkommission im Auftrag der vier beteiligten Universitäten erlässt. ²Der Ablehnungsbescheid ist mit einer Rechtsbehelfsbelehrung zu versehen. ³Er enthält gleichzeitig die Aufforderung, innerhalb einer bestimmten Frist schriftlich zu erklären, ob der Zulassungsantrag für ein Nachrückverfahren aufrechterhalten wird. ⁴Legt die Bewerberin oder der Bewerber diese Erklärung nicht frist- oder formgerecht vor, so ist sie oder er vom Nachrückverfahren ausgeschlossen. ⁵Auf diese Rechtsfolge ist hinzuweisen.
- (3) ¹Das Nachrückverfahren wird anhand der Rangliste nach § 6 Abs. 4 und 5 durchgeführt. ²Ist die Rangliste nach Satz 1 erschöpft, wird eine Rangliste nach dem Ergebnis des Bachelor-Abschlusses oder eines gleichwertigen Abschlusses erstellt und das Nachrückverfahren anhand dieser Rangliste durchgeführt.

(4) ¹Die Zulassungsverfahren werden spätestens am 15.11. bei Zulassung für ein Wintersemester und am 15.05. bei Zulassung für ein Sommersemester abgeschlossen. ²Danach noch verfügbare Studienplätze werden auf formlosen Antrag durch Los an zugangsberechtigte Bewerberinnen oder Bewerber vergeben. ³Der Bewerbungszeitraum hierfür beginnt zwei Wochen vor dem Vorlesungsbeginn des Semesters, für das die Zulassung erfolgen soll, und endet mit dem Abschluss des Auswahlverfahrens. ⁴Die Vergabe der Studienplätze durch Los wird wegen der fortgeschrittenen Vorlesungszeit bei Zulassung für ein Wintersemester spätestens am 30.11. und für ein Sommersemester spätestens am 31.05. abgeschlossen.

§ 9 Zulassung für höhere Semester

- (1) Die freien Studienplätze in einem höheren zulassungsbeschränkten Semester werden in nachstehender Reihenfolge an Bewerberinnen und Bewerber vergeben,
- a) die im gleichen oder einem vergleichbaren Studiengang
- aa) an einer anderen deutschen Hochschule eingeschrieben sind oder waren,
- bb) mit deutscher Staatsangehörigkeit oder zulassungsrechtlich deutschen Staatsangehörigen gleichgestellt an einer ausländischen Hochschule eingeschrieben sind oder waren,
- b) für die eine Ablehnung der Zulassung aus Gründen, die in ihrer Person liegen, eine besondere Härte bedeuten würde,
- c) die sonstige Gründe geltend machen.
- (2) Innerhalb jeder der drei Fallgruppen des Absatzes 1 entscheidet das Ergebnis der Bachelorprüfung oder einer der Bachelorprüfung äquivalenten Prüfung, nächstdem die für die Ortswahl maßgebenden sozialen, insbesondere familiären und wirtschaftlichen Gründe und bei dann noch gleichartigen Fällen letztlich das Los.

IV. Schlussbestimmungen

§ 10 Lenkungsausschuss

Die Fakultätsräte der beteiligten Fakultäten können durch einvernehmlichen Beschluss bestimmen, dass die nach dieser Ordnung vom Fakultätsrat wahrzunehmenden Aufgaben durch einen Lenkungsausschuss wahrgenommen werden.

§ 11 Inkrafttreten; Übergangsbestimmungen

(1) ¹Diese Ordnung tritt am Tag nach ihrer Bekanntmachung in den Amtlichen Mitteilungen aller beteiligten Universitäten in Kraft. ²Sie gilt erstmals für das Vergabeverfahren zum Sommersemester 2012. Zugleich tritt die Ordnung über die Zugangsvoraussetzungen und die Zulassung für den Master-Studiengang "Internet Technologies and Information Systems" in der Fassung der Bekanntmachung vom 13.12.2010 (Amtliche Mitteilungen Nr. 56/10 S. 6204) außer Kraft. Abweichend von Satz 3 bleibt die Ordnung über die Zugangsvoraussetzungen und die Zulassung für den Master-Studiengang "Internet Technologies and Information Systems" in der Fassung der Bekanntmachung vom 13.12.2010 (Amtliche Mitteilungen Nr. 56/10 S. 6204) für Vergabeverfahren vor dem WiSe 2012/2013 anwendbar.

Anlage

Grundlagen der Informatik (mindestens 35 C)

Pflichtbereich

Es müssen Kompetenzen aus jedem der nachfolgend aufgeführten Bereiche nachgewiesen werden:

Automatentheorie, Formale	Grammatiken und Automatenmodelle,
Sprachen und Komplexität	·
Sprachen und Komplexitat	Chomsky-Hierarchie, Algorithmusbegriff,
	Berechenbarkeit und Entscheidbarkeit,
	Komplexität, NP-vollständige Probleme
Logik	Aussagenlogik, Resolution, Endlichkeitssatz,
	Prädikatenlogik, Modelle, Unentscheidbarkeit
	und Unvollständigkeit, Grundlagen der
	Logikprogrammierung
Formale Systeme	Induktion und Rekursion, Graphen und Bäume,
	Termalgebren und abstrakte Datentypen,
	Ersetzungssysteme, Netze
Modellierung	Prinzipien, Entity-Relationship-Modelle,
_	Zustands-Übergangs-, Kontrollfluss- und
	Datenflussmodelle, UML, Petrinetze, Meta-
	Modellierung, Modelltransformationen
Programmierung	Grundlegende Elemente und Konzepte
	imperativer und objektorientierter Sprachen
Programmierparadigmen	objektorientierte, funktionale, logische und
	parallele Programmierkonzepte
Datenstrukturen und	grundlegende Datenstrukturen, Sortieren und
Algorithmen	Suchen, Suchbäume, Hashing, einfache
	Graphen- und geometrische Algorithmen,
	algorithmische Prinzipien, Verifikation und
	Effizienzanalyse von Algorithmen
	,

Informatik der Systeme (aus Pflicht- und Wahlbereich zusammen mindestens 50 C)

Pflichtbereich

Es müssen Kompetenzen aus jedem der nachfolgend aufgeführten Bereiche nachgewiesen werden:

Grundlagen der Betriebssysteme	Aufgaben und Struktur, UNIX, Prozesse, Nebenläufigkeit, Synchronisation und Kommunikation, Dateien, Schutzmechanismen, Systemaufrufe, Shells, Utilities
Grundlagen der	Softwareprozessmodelle, Projektmanagement,

Spezifikation, Implementierungstechniken, Testen, Integrieren, Warten, Dokumentieren, CASE, Qualitätssicherung, Konfigurationsmanagement, Reengineering Aufbau von Datenbanksystemen, Entity- Relationship-Modell, Relationenmodell, Normalformen, Relationenalgebra, SQL, Anfragekalküle, Implementierungstechniken, Anfragebearbeitung und –optimierung, Transaktionen, Synchronisation und Datensicherung Rechnernetze oder Verteilte Systeme Rechnernetze oder Verteilte Systeme Rechnernetze oder Verteilte Systeme Bienste und Protokolle, Kommunikationsarchitekturen, OSI- Referenzmodell, Internet-Protokolle, Netzmanagement, Weitverkehrsnetze, lokale Netze Digitaltechnische Grundlagen Boolesche Algebra, kombinatorische und sequentielle Logik, Schaltnetze, Schaltwerke, Minimierung, elementare Komponenten und Funktionsblöcke, Realisierung von Logikfunktionen, Validierung Rechnersysteme Zahlendarstellungen und Rechnerarithmetik, Assemblerprogrammierung und deren Anwendung zur Realisierung höherer Programmiersprachen, Aufbau von Rechenwerken, Mikroarchitektur eines Prozessors, Befehlsinterpretation, Befehlsfließband, Speicherhierarchien, Ein- /Ausgabe Sicherheit Verlässlichkeit von Informatiksystemen, Risiken, Sicherheitsprobleme, Angriffsszenarien. Kryptographie: Techniken, Protokolle, Software, Hardware, Infrastrukturen, Zugriffsschutz, Informationsfluss, Modelle und Mechanismen. Sicherheitspolitiken, Sicherheitsmanagement,	Softwaretechnik	Anfordarungsanalysa Entwurfemathadan
Testen, Integrieren, Warten, Dokumentieren, CASE, Qualitätssicherung, Konfigurationsmanagement, Reengineering Datenbanksysteme Aufbau von Datenbanksystemen, Entity-Relationship-Modell, Relationenmodell, Normalformen, Relationenalgebra, SQL, Anfragekalküle, Implementierungstechniken, Anfragebearbeitung und –optimierung, Transaktionen, Synchronisation und Datensicherung Rechnernetze oder Verteilte Systeme Rechnernetze oder Verteilte Systeme Dienste und Protokolle, Kommunikationsarchitekturen, OSI-Referenzmodell, Internet-Protokolle, Netzmanagement, Weitverkehrsnetze, lokale Netze Digitaltechnische Grundlagen Dienste und Protokolle, Schaltnetze, Schaltwerke, Minimierung, elementare Komponenten und Funktionsblöcke, Realisierung von Logikfunktionen, Validierung Rechnersysteme Zahlendarstellungen und Rechnerarithmetik, Assemblerprogrammierung und deren Anwendung zur Realisierung höherer Programmiersprachen, Aufbau von Rechenwerken, Mikroarchitektur eines Prozessors, Befehlsinterpretation, Befehlsfließband, Speicherhierarchien, Ein-/Ausgabe Sicherheit Verlässlichkeit von Informatiksystemen, Risiken, Sicherheitsprobleme, Angriffsszenarien. Kryptographie: Techniken, Protokolle, Software, Hardware, Infrastrukturen, Zugriffsschutz, Informationsfluss, Modelle und Mechanismen. Sicherheitspolitiken, Sicherheitsmanagement,	Softwaretechnik	
CASE, Qualitätssicherung, Konfigurationsmanagement, Reengineering Aufbau von Datenbanksystemen, Entity- Relationship-Modell, Relationenmodell, Normalformen, Relationenalgebra, SQL, Anfragekalküle, Implementierungstechniken, Anfragebearbeitung und –optimierung, Transaktionen, Synchronisation und Datensicherung Rechnernetze oder Verteilte Systeme Rechnernetze oder Verteilte Systeme Rechnernetze oder Verteilte Systeme Dienste und Protokolle, Kommunikationsarchitekturen, OSI- Referenzmodell, Internet-Protokolle, Netzmanagement, Weitverkehrsnetze, lokale Netze Digitaltechnische Grundlagen Digitaltechnische Grundlagen Digitaltechnische Grundlagen Digitaltechnische Anetze Digitaltechnische Anetzellunge, elementare Komponenten und Funktionsblöcke, Realisierung von Logikfunktionen, Validierung Rechnersysteme Zahlendarstellungen und Rechnerarithmetik, Assemblerprogrammierung und deren Anwendung zur Realisierung höherer Programmiersprachen, Aufbau von Rechenwerken, Mikroarchitektur eines Prozessors, Befehlsinterpretation, Befehlsfließband, Speicherhierarchien, Ein- /Ausgabe Sicherheit Verlässlichkeit von Informatiksystemen, Risiken, Sicherheitsprobleme, Angriffsszenarien. Kryptographie: Techniken, Protokolle, Software, Hardware, Infrastrukturen, Zugriffsschutz, Informationsfluss, Modelle und Mechanismen. Sicherheitspolitiken, Sicherheitsmanagement,		_ ·
Normalformen, Reengineering		
Aufbau von Datenbanksystemen, Entity- Relationship-Modell, Relationenmodell, Normalformen, Relationenalgebra, SQL, Anfragekalküle, Implementierungstechniken, Anfragebearbeitung und –optimierung, Transaktionen, Synchronisation und Datensicherung Rechnernetze oder Verteilte Systeme Rechnernetze oder Verteilte Systeme Rechnernetze oder Verteilte Systeme Dienste und Protokolle, Netzmanagement, Weitverkehrsnetze, lokale Netze Digitaltechnische Grundlagen Dienste und Protokolle, Netzmanagement, Weitverkehrsnetze, lokale Netze Digitaltechnische Grundlagen Dienste und Protokolle, Netzmanagement, Weitverkehrsnetze, lokale Netze Digitaltechnische Grundlagen Dienste und Protokolle, Netzmanagement, Weitverkehrsnetze, lokale Netze Dienste und Protokolle, Netzmanagement, Weitverkehrsnetze, lokale Netze Dienste und Protokolle, Netzmanagement, Weitverkehrsnetze, lokale Netze Dienste und Protokolle, Netzmanagement, Validierung, OSI- Referenzmodell, Internet-Protokolle, Netzmanagement, Aufbau von Rechnersysteme Zahlendarstellungen und Rechnerarithmetik, Assemblerprogrammierung und deren Anwendung zur Realisierung höherer Programmiersprachen, Aufbau von Rechenwerken, Mikroarchitektur eines Prozessors, Befehlsinterpretation, Befehlsfließband, Speicherhierarchien, Ein- /Ausgabe Sicherheit Verlässlichkeit von Informatiksystemen, Risiken, Sicherheitsprobleme, Angriffsszenarien. Kryptographie: Techniken, Protokolle, Software, Hardware, Infrastrukturen, Zugriffsschutz, Informationsfluss, Modelle und Mechanismen. Sicherheitspolitiken, Sicherheitsmanagement,		<u>-</u>
Relationship-Modell, Relationenmodell, Normalformen, Relationenalgebra, SQL, Anfragekalküle, Implementierungstechniken, Anfragebearbeitung und –optimierung, Transaktionen, Synchronisation und Datensicherung Rechnernetze oder Verteilte Systeme Dienste und Protokolle, Kommunikationsarchitekturen, OSI- Referenzmodell, Internet-Protokolle, Netzmanagement, Weitverkehrsnetze, lokale Netze Digitaltechnische Grundlagen Digitaltechnische Grundlagen Sequentielle Logik, Schaltnetze, Schaltwerke, Minimierung, elementare Komponenten und Funktionsblöcke, Realisierung von Logikfunktionen, Validierung Rechnersysteme Zahlendarstellungen und Rechnerarithmetik, Assemblerprogrammierung und deren Anwendung zur Realisierung höherer Programmiersprachen, Aufbau von Rechenwerken, Mikroarchitektur eines Prozessors, Befehlsinterpretation, Befehlsfließband, Speicherhierarchien, Ein- /Ausgabe Sicherheit Verlässlichkeit von Informatiksystemen, Risiken, Sicherheitsprobleme, Angriffsszenarien. Kryptographie: Techniken, Protokolle, Software, Hardware, Infrastrukturen, Zugriffsschutz, Informationsfluss, Modelle und Mechanismen. Sicherheitspolitiken, Sicherheitsmanagement,		
Normalformen, Relationenalgebra, SQL, Anfragekalküle, Implementierungstechniken, Anfragebearbeitung und –optimierung, Transaktionen, Synchronisation und Datensicherung Rechnernetze oder Verteilte Systeme Rechnernetze oder Verteilte Systeme Referenzmodell, Internet-Protokolle, Netzmanagement, Weitverkehrsnetze, lokale Netze Digitaltechnische Grundlagen Digitaltechnische Grundlagen Sequentielle Logik, Schaltnetze, Schaltwerke, Minimierung, elementare Komponenten und Funktionsblöcke, Realisierung von Logikfunktionen, Validierung Rechnersysteme Zahlendarstellungen und Rechnerarithmetik, Assemblerprogrammierung und deren Anwendung zur Realisierung höherer Programmiersprachen, Aufbau von Rechenwerken, Mikroarchitektur eines Prozessors, Befehlsinterpretation, Befehlsfließband, Speicherhierarchien, Ein- /Ausgabe Sicherheit Verlässlichkeit von Informatiksystemen, Risiken, Sicherheitsprobleme, Angriffsszenarien. Kryptographie: Techniken, Protokolle, Software, Hardware, Infrastrukturen, Zugriffsschutz, Informationsfluss, Modelle und Mechanismen. Sicherheitspolitiken, Sicherheitsmanagement,	Datenbanksysteme	
Anfragekalküle, Implementierungstechniken, Anfragebearbeitung und –optimierung, Transaktionen, Synchronisation und Datensicherung Rechnernetze oder Verteilte Systeme Dienste und Protokolle, Kommunikationsarchitekturen, OSI- Referenzmodell, Internet-Protokolle, Netzmanagement, Weitverkehrsnetze, lokale Netze Digitaltechnische Grundlagen Sequentielle Logik, Schaltnetze, Schaltwerke, Minimierung, elementare Komponenten und Funktionsblöcke, Realisierung von Logikfunktionen, Validierung Zahlendarstellungen und Rechnerarithmetik, Assemblerprogrammierung und deren Anwendung zur Realisierung höherer Programmiersprachen, Aufbau von Rechenwerken, Mikroarchitektur eines Prozessors, Befehlsinterpretation, Befehlsfließband, Speicherhierarchien, Ein- /Ausgabe Sicherheit Verlässlichkeit von Informatiksystemen, Risiken, Sicherheitsprobleme, Angriffsszenarien. Kryptographie: Techniken, Protokolle, Software, Hardware, Infrastrukturen, Zugriffsschutz, Informationsfluss, Modelle und Mechanismen. Sicherheitspolitiken, Sicherheitsmanagement,		<u> </u>
Anfragebearbeitung und –optimierung, Transaktionen, Synchronisation und Datensicherung Rechnernetze oder Verteilte Systeme Dienste und Protokolle, Kommunikationsarchitekturen, OSI- Referenzmodell, Internet-Protokolle, Netzmanagement, Weitverkehrsnetze, lokale Netze Digitaltechnische Grundlagen Digitaltechnische Grundlagen Sequentielle Logik, Schaltnetze, Schaltwerke, Minimierung, elementare Komponenten und Funktionsblöcke, Realisierung von Logikfunktionen, Validierung Rechnersysteme Zahlendarstellungen und Rechnerarithmetik, Assemblerprogrammierung und deren Anwendung zur Realisierung höherer Programmiersprachen, Aufbau von Rechenwerken, Mikroarchitektur eines Prozessors, Befehlsinterpretation, Befehlsfließband, Speicherhierarchien, Ein- /Ausgabe Sicherheit Verlässlichkeit von Informatiksystemen, Risiken, Sicherheitsprobleme, Angriffsszenarien. Kryptographie: Techniken, Protokolle, Software, Hardware, Infrastrukturen, Zugriffsschutz, Informationsfluss, Modelle und Mechanismen. Sicherheitspolitiken, Sicherheitsmanagement,		
Rechnernetze oder Verteilte Systeme Rechnernetze oder Verteilte Systeme Dienste und Protokolle, Kommunikationsarchitekturen, OSI- Referenzmodell, Internet-Protokolle, Netzmanagement, Weitverkehrsnetze, lokale Netze Digitaltechnische Grundlagen Digitaltechnische Grundlagen Sequentielle Logik, Schaltnetze, Schaltwerke, Minimierung, elementare Komponenten und Funktionsblöcke, Realisierung von Logikfunktionen, Validierung Rechnersysteme Zahlendarstellungen und Rechnerarithmetik, Assemblerprogrammierung und deren Anwendung zur Realisierung höherer Programmiersprachen, Aufbau von Rechenwerken, Mikroarchitektur eines Prozessors, Befehlsinterpretation, Befehlsfließband, Speicherhierarchien, Ein- /Ausgabe Sicherheit Verlässlichkeit von Informatiksystemen, Risiken, Sicherheitsprobleme, Angriffsszenarien. Kryptographie: Techniken, Protokolle, Software, Hardware, Infrastrukturen, Zugriffsschutz, Informationsfluss, Modelle und Mechanismen. Sicherheitspolitiken, Sicherheitsmanagement,		
Rechnernetze oder Verteilte Systeme Dienste und Protokolle, Kommunikationsarchitekturen, OSI- Referenzmodell, Internet-Protokolle, Netzmanagement, Weitverkehrsnetze, lokale Netze Digitaltechnische Grundlagen Sequentielle Logik, Schaltnetze, Schaltwerke, Minimierung, elementare Komponenten und Funktionsblöcke, Realisierung von Logikfunktionen, Validierung Rechnersysteme Zahlendarstellungen und Rechnerarithmetik, Assemblerprogrammierung und deren Anwendung zur Realisierung höherer Programmiersprachen, Aufbau von Rechenwerken, Mikroarchitektur eines Prozessors, Befehlsinterpretation, Befehlsfließband, Speicherhierarchien, Ein- /Ausgabe Sicherheit Verlässlichkeit von Informatiksystemen, Risiken, Sicherheitsprobleme, Angriffsszenarien. Kryptographie: Techniken, Protokolle, Software, Hardware, Infrastrukturen, Zugriffsschutz, Informationsfluss, Modelle und Mechanismen. Sicherheitspolitiken, Sicherheitsmanagement,		
Rechnernetze oder Verteilte Systeme Dienste und Protokolle, Kommunikationsarchitekturen, OSI- Referenzmodell, Internet-Protokolle, Netzmanagement, Weitverkehrsnetze, lokale Netze Digitaltechnische Grundlagen Dienste und Protokolle, Netzmanagement, Weitverkehrsnetze, lokale Netze Diolesche Algebra, kombinatorische und sequentielle Logik, Schaltnetze, Schaltwerke, Minimierung, elementare Komponenten und Funktionsblöcke, Realisierung von Logikfunktionen, Validierung Rechnersysteme Zahlendarstellungen und Rechnerarithmetik, Assemblerprogrammierung und deren Anwendung zur Realisierung höherer Programmiersprachen, Aufbau von Rechenwerken, Mikroarchitektur eines Prozessors, Befehlsinterpretation, Befehlsfließband, Speicherhierarchien, Ein- /Ausgabe Sicherheit Verlässlichkeit von Informatiksystemen, Risiken, Sicherheitsprobleme, Angriffsszenarien. Kryptographie: Techniken, Protokolle, Software, Hardware, Infrastrukturen, Zugriffsschutz, Informationsfluss, Modelle und Mechanismen. Sicherheitspolitiken, Sicherheitsmanagement,		
Kommunikationsarchitekturen, OSI- Referenzmodell, Internet-Protokolle, Netzmanagement, Weitverkehrsnetze, lokale Netze Digitaltechnische Grundlagen boolesche Algebra, kombinatorische und sequentielle Logik, Schaltnetze, Schaltwerke, Minimierung, elementare Komponenten und Funktionsblöcke, Realisierung von Logikfunktionen, Validierung Rechnersysteme Zahlendarstellungen und Rechnerarithmetik, Assemblerprogrammierung und deren Anwendung zur Realisierung höherer Programmiersprachen, Aufbau von Rechenwerken, Mikroarchitektur eines Prozessors, Befehlsinterpretation, Befehlsfließband, Speicherhierarchien, Ein- /Ausgabe Sicherheit Verlässlichkeit von Informatiksystemen, Risiken, Sicherheitsprobleme, Angriffsszenarien. Kryptographie: Techniken, Protokolle, Software, Hardware, Infrastrukturen, Zugriffsschutz, Informationsfluss, Modelle und Mechanismen. Sicherheitspolitiken, Sicherheitsmanagement,		3
Referenzmodell, Internet-Protokolle, Netzmanagement, Weitverkehrsnetze, lokale Netze Digitaltechnische Grundlagen boolesche Algebra, kombinatorische und sequentielle Logik, Schaltnetze, Schaltwerke, Minimierung, elementare Komponenten und Funktionsblöcke, Realisierung von Logikfunktionen, Validierung Rechnersysteme Zahlendarstellungen und Rechnerarithmetik, Assemblerprogrammierung und deren Anwendung zur Realisierung höherer Programmiersprachen, Aufbau von Rechenwerken, Mikroarchitektur eines Prozessors, Befehlsinterpretation, Befehlsfließband, Speicherhierarchien, Ein- /Ausgabe Sicherheit Verlässlichkeit von Informatiksystemen, Risiken, Sicherheitsprobleme, Angriffsszenarien. Kryptographie: Techniken, Protokolle, Software, Hardware, Infrastrukturen, Zugriffsschutz, Informationsfluss, Modelle und Mechanismen. Sicherheitspolitiken, Sicherheitsmanagement,		· ·
Netzmanagement, Weitverkehrsnetze, lokale Netze Digitaltechnische boolesche Algebra, kombinatorische und sequentielle Logik, Schaltnetze, Schaltwerke, Minimierung, elementare Komponenten und Funktionsblöcke, Realisierung von Logikfunktionen, Validierung Rechnersysteme Zahlendarstellungen und Rechnerarithmetik, Assemblerprogrammierung und deren Anwendung zur Realisierung höherer Programmiersprachen, Aufbau von Rechenwerken, Mikroarchitektur eines Prozessors, Befehlsinterpretation, Befehlsfließband, Speicherhierarchien, Ein-/Ausgabe Sicherheit Verlässlichkeit von Informatiksystemen, Risiken, Sicherheitsprobleme, Angriffsszenarien. Kryptographie: Techniken, Protokolle, Software, Hardware, Infrastrukturen, Zugriffsschutz, Informationsfluss, Modelle und Mechanismen. Sicherheitspolitiken, Sicherheitsmanagement,	Systeme	,
Digitaltechnische Grundlagen Sequentielle Logik, Schaltnetze, Schaltwerke, Minimierung, elementare Komponenten und Funktionsblöcke, Realisierung von Logikfunktionen, Validierung Rechnersysteme Zahlendarstellungen und Rechnerarithmetik, Assemblerprogrammierung und deren Anwendung zur Realisierung höherer Programmiersprachen, Aufbau von Rechenwerken, Mikroarchitektur eines Prozessors, Befehlsinterpretation, Befehlsfließband, Speicherhierarchien, Ein- /Ausgabe Sicherheit Verlässlichkeit von Informatiksystemen, Risiken, Sicherheitsprobleme, Angriffsszenarien. Kryptographie: Techniken, Protokolle, Software, Hardware, Infrastrukturen, Zugriffsschutz, Informationsfluss, Modelle und Mechanismen. Sicherheitspolitiken, Sicherheitsmanagement,		
Digitaltechnische Grundlagen Sequentielle Logik, Schaltnetze, Schaltwerke, Minimierung, elementare Komponenten und Funktionsblöcke, Realisierung von Logikfunktionen, Validierung Rechnersysteme Zahlendarstellungen und Rechnerarithmetik, Assemblerprogrammierung und deren Anwendung zur Realisierung höherer Programmiersprachen, Aufbau von Rechenwerken, Mikroarchitektur eines Prozessors, Befehlsinterpretation, Befehlsfließband, Speicherhierarchien, Ein- /Ausgabe Sicherheit Verlässlichkeit von Informatiksystemen, Risiken, Sicherheitsprobleme, Angriffsszenarien. Kryptographie: Techniken, Protokolle, Software, Hardware, Infrastrukturen, Zugriffsschutz, Informationsfluss, Modelle und Mechanismen. Sicherheitspolitiken, Sicherheitsmanagement,		Netzmanagement, Weitverkehrsnetze, lokale
Sequentielle Logik, Schaltnetze, Schaltwerke, Minimierung, elementare Komponenten und Funktionsblöcke, Realisierung von Logikfunktionen, Validierung Rechnersysteme Zahlendarstellungen und Rechnerarithmetik, Assemblerprogrammierung und deren Anwendung zur Realisierung höherer Programmiersprachen, Aufbau von Rechenwerken, Mikroarchitektur eines Prozessors, Befehlsinterpretation, Befehlsfließband, Speicherhierarchien, Ein- /Ausgabe Sicherheit Verlässlichkeit von Informatiksystemen, Risiken, Sicherheitsprobleme, Angriffsszenarien. Kryptographie: Techniken, Protokolle, Software, Hardware, Infrastrukturen, Zugriffsschutz, Informationsfluss, Modelle und Mechanismen. Sicherheitspolitiken, Sicherheitsmanagement,		
Minimierung, elementare Komponenten und Funktionsblöcke, Realisierung von Logikfunktionen, Validierung Rechnersysteme Zahlendarstellungen und Rechnerarithmetik, Assemblerprogrammierung und deren Anwendung zur Realisierung höherer Programmiersprachen, Aufbau von Rechenwerken, Mikroarchitektur eines Prozessors, Befehlsinterpretation, Befehlsfließband, Speicherhierarchien, Ein-/Ausgabe Sicherheit Verlässlichkeit von Informatiksystemen, Risiken, Sicherheitsprobleme, Angriffsszenarien. Kryptographie: Techniken, Protokolle, Software, Hardware, Infrastrukturen, Zugriffsschutz, Informationsfluss, Modelle und Mechanismen. Sicherheitspolitiken, Sicherheitsmanagement,	Digitaltechnische	boolesche Algebra, kombinatorische und
Funktionsblöcke, Realisierung von Logikfunktionen, Validierung Rechnersysteme Zahlendarstellungen und Rechnerarithmetik, Assemblerprogrammierung und deren Anwendung zur Realisierung höherer Programmiersprachen, Aufbau von Rechenwerken, Mikroarchitektur eines Prozessors, Befehlsinterpretation, Befehlsfließband, Speicherhierarchien, Ein- /Ausgabe Sicherheit Verlässlichkeit von Informatiksystemen, Risiken, Sicherheitsprobleme, Angriffsszenarien. Kryptographie: Techniken, Protokolle, Software, Hardware, Infrastrukturen, Zugriffsschutz, Informationsfluss, Modelle und Mechanismen. Sicherheitspolitiken, Sicherheitsmanagement,	Grundlagen	sequentielle Logik, Schaltnetze, Schaltwerke,
Rechnersysteme Zahlendarstellungen und Rechnerarithmetik, Assemblerprogrammierung und deren Anwendung zur Realisierung höherer Programmiersprachen, Aufbau von Rechenwerken, Mikroarchitektur eines Prozessors, Befehlsinterpretation, Befehlsfließband, Speicherhierarchien, Ein- /Ausgabe Sicherheit Verlässlichkeit von Informatiksystemen, Risiken, Sicherheitsprobleme, Angriffsszenarien. Kryptographie: Techniken, Protokolle, Software, Hardware, Infrastrukturen, Zugriffsschutz, Informationsfluss, Modelle und Mechanismen. Sicherheitspolitiken, Sicherheitsmanagement,		Minimierung, elementare Komponenten und
Zahlendarstellungen und Rechnerarithmetik, Assemblerprogrammierung und deren Anwendung zur Realisierung höherer Programmiersprachen, Aufbau von Rechenwerken, Mikroarchitektur eines Prozessors, Befehlsinterpretation, Befehlsfließband, Speicherhierarchien, Ein- /Ausgabe Sicherheit Verlässlichkeit von Informatiksystemen, Risiken, Sicherheitsprobleme, Angriffsszenarien. Kryptographie: Techniken, Protokolle, Software, Hardware, Infrastrukturen, Zugriffsschutz, Informationsfluss, Modelle und Mechanismen. Sicherheitspolitiken, Sicherheitsmanagement,		Funktionsblöcke, Realisierung von
Assemblerprogrammierung und deren Anwendung zur Realisierung höherer Programmiersprachen, Aufbau von Rechenwerken, Mikroarchitektur eines Prozessors, Befehlsinterpretation, Befehlsfließband, Speicherhierarchien, Ein-/Ausgabe Sicherheit Verlässlichkeit von Informatiksystemen, Risiken, Sicherheitsprobleme, Angriffsszenarien. Kryptographie: Techniken, Protokolle, Software, Hardware, Infrastrukturen, Zugriffsschutz, Informationsfluss, Modelle und Mechanismen. Sicherheitspolitiken, Sicherheitsmanagement,		Logikfunktionen, Validierung
Anwendung zur Realisierung höherer Programmiersprachen, Aufbau von Rechenwerken, Mikroarchitektur eines Prozessors, Befehlsinterpretation, Befehlsfließband, Speicherhierarchien, Ein-/Ausgabe Sicherheit Verlässlichkeit von Informatiksystemen, Risiken, Sicherheitsprobleme, Angriffsszenarien. Kryptographie: Techniken, Protokolle, Software, Hardware, Infrastrukturen, Zugriffsschutz, Informationsfluss, Modelle und Mechanismen. Sicherheitspolitiken, Sicherheitsmanagement,	Rechnersysteme	Zahlendarstellungen und Rechnerarithmetik,
Programmiersprachen, Aufbau von Rechenwerken, Mikroarchitektur eines Prozessors, Befehlsinterpretation, Befehlsfließband, Speicherhierarchien, Ein- /Ausgabe Sicherheit Verlässlichkeit von Informatiksystemen, Risiken, Sicherheitsprobleme, Angriffsszenarien. Kryptographie: Techniken, Protokolle, Software, Hardware, Infrastrukturen, Zugriffsschutz, Informationsfluss, Modelle und Mechanismen. Sicherheitspolitiken, Sicherheitsmanagement,		Assemblerprogrammierung und deren
Rechenwerken, Mikroarchitektur eines Prozessors, Befehlsinterpretation, Befehlsfließband, Speicherhierarchien, Ein- /Ausgabe Sicherheit Verlässlichkeit von Informatiksystemen, Risiken, Sicherheitsprobleme, Angriffsszenarien. Kryptographie: Techniken, Protokolle, Software, Hardware, Infrastrukturen, Zugriffsschutz, Informationsfluss, Modelle und Mechanismen. Sicherheitspolitiken, Sicherheitsmanagement,		Anwendung zur Realisierung höherer
Prozessors, Befehlsinterpretation, Befehlsfließband, Speicherhierarchien, Ein- /Ausgabe Sicherheit Verlässlichkeit von Informatiksystemen, Risiken, Sicherheitsprobleme, Angriffsszenarien. Kryptographie: Techniken, Protokolle, Software, Hardware, Infrastrukturen, Zugriffsschutz, Informationsfluss, Modelle und Mechanismen. Sicherheitspolitiken, Sicherheitsmanagement,		Programmiersprachen, Aufbau von
Befehlsfließband, Speicherhierarchien, Ein-/Ausgabe Verlässlichkeit von Informatiksystemen, Risiken, Sicherheitsprobleme, Angriffsszenarien. Kryptographie: Techniken, Protokolle, Software, Hardware, Infrastrukturen, Zugriffsschutz, Informationsfluss, Modelle und Mechanismen. Sicherheitspolitiken, Sicherheitsmanagement,		Rechenwerken, Mikroarchitektur eines
Ausgabe Verlässlichkeit von Informatiksystemen, Risiken, Sicherheitsprobleme, Angriffsszenarien. Kryptographie: Techniken, Protokolle, Software, Hardware, Infrastrukturen, Zugriffsschutz, Informationsfluss, Modelle und Mechanismen. Sicherheitspolitiken, Sicherheitsmanagement,		Prozessors, Befehlsinterpretation,
Verlässlichkeit von Informatiksystemen, Risiken, Sicherheitsprobleme, Angriffsszenarien. Kryptographie: Techniken, Protokolle, Software, Hardware, Infrastrukturen, Zugriffsschutz, Informationsfluss, Modelle und Mechanismen. Sicherheitspolitiken, Sicherheitsmanagement,		Befehlsfließband, Speicherhierarchien, Ein-
Sicherheitsprobleme, Angriffsszenarien. Kryptographie: Techniken, Protokolle, Software, Hardware, Infrastrukturen, Zugriffsschutz, Informationsfluss, Modelle und Mechanismen. Sicherheitspolitiken, Sicherheitsmanagement,		/Ausgabe
Kryptographie: Techniken, Protokolle, Software, Hardware, Infrastrukturen, Zugriffsschutz, Informationsfluss, Modelle und Mechanismen. Sicherheitspolitiken, Sicherheitsmanagement,	Sicherheit	Verlässlichkeit von Informatiksystemen, Risiken,
Hardware, Infrastrukturen, Zugriffsschutz, Informationsfluss, Modelle und Mechanismen. Sicherheitspolitiken, Sicherheitsmanagement,		Sicherheitsprobleme, Angriffsszenarien.
Hardware, Infrastrukturen, Zugriffsschutz, Informationsfluss, Modelle und Mechanismen. Sicherheitspolitiken, Sicherheitsmanagement,		Kryptographie: Techniken, Protokolle, Software,
Sicherheitspolitiken, Sicherheitsmanagement,		
Sicherheitspolitiken, Sicherheitsmanagement,		Informationsfluss, Modelle und Mechanismen.
·		
Datenschutz		•

Wahlbereich

Es müssen Kompetenzen aus wenigstens einem der nachfolgend aufgeführten Bereiche nachgewiesen werden:

Künstliche Intelligenz	Wissensrepräsentation, Suchalgorithmen, nicht-
	klassische Logiken, Theorembeweiser, Lernen
	und Planen, unscharfes Wissen, Robotik,

	Verarbeitung natürlicher Sprache,
	Multiagentensysteme
Übersetzerbau	Syntax, Semantik, lexikalische Analyse, Parsing,
Obersetzerbau	
	Kontextprüfung, Codegenerierung,
	Codeoptimierung, Generatoren,
Manach Masahina	Programmanalyse
Mensch-Maschine- Schnittstellen	Softwareergonomie, Benutzungsoberflächen,
Schnittstellen	Usability Engineering, Gestaltung von Arbeitsabläufen
Simulation	
Simulation	equation-based modelling vs. agent-based modelling, Simulation kontinuierlicher,
	diskreter und hybrider Prozesse,
	ereignisorientierte Simulation, agentenbasierte Simulation, Simulation von evolutionären und
	Lernprozessen, genetische Algorithmen, neuronale Netze; Anwendungen der Simulation
	in Natur- und Sozialwissenschaften
Computergrafik	Grundlagen der Rasterisierung, Algorithmen der
Computergrank	Scankonvertierung und des Clippings, 3D-
	Transformationen, Kameratransformation,
	orthographische und perspektivische
	Projektion, Beleuchtungssimulation,
	parametrische Kurven
Rechnersehen	Methoden der Mustererkennung,
Reciliersenen	Bildverarbeitung, projektive Geometrie,
	Kameramodelle, Klassifikatorentwurf
Informatik und Gesellschaft	Strukturwandel zur "Informationsgesellschaft":
mormatik and Gesensenare	Globalisierung, neue Geschäftsmodelle, mobile
	und global vernetzte Kommunikation;
	Steuerungs- und Regulierungsprobleme:
	Zugang, Kompetenz ("Digital Divide");
	Datenschutz; Eigentumsrechte an Inhalten,
	Werkzeugen und Produkten;
	Anwendungsbereiche: eCommerce,
	eGovernment, ePrivacy
Elektrotechnische	Gleich- und Wechselstromkreise, Reaktive
Grundlagen	Systeme, Grundlagen der Systemtheorie (Zeit
3	und Frequenzbereich, Abtasttheorem, z-
	Transformation), Grundlagen der
	Nachrichtentechnik, Halbleiter, Transistoren,
	integrierte Schaltungen
Systemsoftware	maschinennahe Programmierung,
-,	Assemblerprogrammierung, Prozeduraufrufe,
	Stack- und Heapverwaltung, Garbage
	Collection, Prozesse, Unterbrechungen,

	Synchronisation,
	Speicherverwaltung, E/A-System, Compiler-
	Binder-Lader, Laufzeitsystem,
	Kommunikationsnetze, ISO/OSI-Schichten,
	TCP/IP-Protokolle
Eingebettete Systeme	Spezifikation eingebetteter Systeme, Hardware-
	Plattformen, Realzeitbetriebsysteme, Realzeit-
	Scheduling, Hardware-/Software-Codesign,
	Validierung eingebetteter Systeme,
	Leistungsbewertung, Energieeffizienz,
	Simulation, digitale Signalverarbeitung,
	Kommunikationsprotokolle, maschinelles
	Sehen, Roboter, mobile computing

Mathematik (aus Pflicht- und Wahlbereich zusammen mindestens 25 C)

Pflichtbereich

Es müssen Kompetenzen aus jedem der nachfolgend aufgeführten Bereiche nachgewiesen werden:

Mathematik – Analysis I	rationale, reelle, komplexe Zahlen, Folgen,
	Reihen, Konvergenz, Stetigkeit, Funktionen
	einer Variablen, Differenzieren, Integrieren,
	Asymptotik, Iterationen, Fixpunkte
Mathematik – Analysis II	Differential- und Integralrechnung mehrerer
-	Variablen, Fourierreihen, elementare
	Vektoranalysis
Mathematik – Lineare	Lineare Gleichungssysteme, Vektorräume, Basis,
Algebra	Dimension, lineare Abbildungen, Matrizen,
_	Determinanten, Eigenwerte
Mathematik – Diskrete	Mengen, Relationen, Graphen, Terme, Gruppen,
Strukturen	Ringe, Körper, endliche Kombinatorik,
	Grundbegriffe der Zahlentheorie

Wahlbereich

Es müssen Kompetenzen aus wenigstens einem der nachfolgend aufgeführten Bereiche nachgewiesen werden:

Mathematik –	Wahrscheinlichkeitsräume, Laplace
Wahrscheinlichkeitstheorie	Experimente, bedingte Wahrscheinlichkeiten und Unabhängigkeit, Zufallsgrößen und ihre Verteilungen, zentraler Grenzwertsatz, Zufallszahlen
Statistik/Stochastik	Wahrscheinlichkeit, Verteilungsfunktion,
	wichtige Verteilungen (Gleichverteilung,

	Normalverteilung, chi^2, Exponentialverteilung, Betaverteilung, Erlangverteilung), Grundlagen der Stichprobentheorie, Grundlagen der Testtheorie (Fehler erster und zweiter Art, Signifikanzniveau), stochastische Prozesse, Markov-Eigenschaft
Numerische Algorithmen	Gleitpunktarithmetik, Rundung, Kondition, Stabilität, Interpolation und Quadratur (Polynome, Splines, FFT), lineare Gleichungssysteme, iterative Verfahren (linear und nichtlinear), gewöhnliche Differentialgleichungen (z.B. Euler, Runge- Kutta)